ASXL2 is essential for haematopoiesis and acts as a haploinsufficient tumour suppressor in leukemia

نویسندگان

  • Jean-Baptiste Micol
  • Alessandro Pastore
  • Daichi Inoue
  • Nicolas Duployez
  • Eunhee Kim
  • Stanley Chun-Wei Lee
  • Benjamin H Durham
  • Young Rock Chung
  • Hana Cho
  • Xiao Jing Zhang
  • Akihide Yoshimi
  • Andrei Krivtsov
  • Richard Koche
  • Eric Solary
  • Amit Sinha
  • Claude Preudhomme
  • Omar Abdel-Wahab
چکیده

Additional sex combs-like (ASXL) proteins are mammalian homologues of additional sex combs (Asx), a regulator of trithorax and polycomb function in Drosophila. While there has been great interest in ASXL1 due to its frequent mutation in leukemia, little is known about its paralog ASXL2, which is frequently mutated in acute myeloid leukemia patients bearing the RUNX1-RUNX1T1 (AML1-ETO) fusion. Here we report that ASXL2 is required for normal haematopoiesis with distinct, non-overlapping effects from ASXL1 and acts as a haploinsufficient tumour suppressor. While Asxl2 was required for normal haematopoietic stem cell self-renewal, Asxl2 loss promoted AML1-ETO leukemogenesis. Moreover, ASXL2 target genes strongly overlapped with those of RUNX1 and AML1-ETO and ASXL2 loss was associated with increased chromatin accessibility at putative enhancers of key leukemogenic loci. These data reveal that Asxl2 is a critical regulator of haematopoiesis and mediates transcriptional effects that promote leukemogenesis driven by AML1-ETO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of Asxl2 leads to myeloid malignancies in mice

ASXL2 is frequently mutated in acute myeloid leukaemia patients with t(8;21). However, the roles of ASXL2 in normal haematopoiesis and the pathogenesis of myeloid malignancies remain unknown. Here we show that deletion of Asxl2 in mice leads to the development of myelodysplastic syndrome (MDS)-like disease. Asxl2-/- mice have an increased bone marrow (BM) long-term haematopoietic stem cells (HS...

متن کامل

MicroRNAs as a New Molecular Biomarker for Diagnosis and Prognosis of T-cell Acute Lymphoblastic Leukemia (T-ALL): A Systematic Review

MicroRNAs (miRNAs, miRs) are small endogenous non-coding RNAs that regulate the expression of protein-encoding genes at the post-transcriptional level. Several studies have described the role of miRNAs in T-cell acute lymphoblastic leukemia (T-ALL), including tumor suppressor and oncogenic miRNAs. Down-regulation of miRNA expression is a prominent feature of human malignancy. This down-regulati...

متن کامل

Changes in Expression of miR-1297 and PTEN Tumor Suppressor Gene in T-cell Acute Lymphoblastic Leukemia

Background and purpose: T-cell acute lymphoblastic leukemia (T-ALL) is a type of blood malignancy caused by changes in the precursors of T lymphocyte cells. The PTEN gene is one of the most common tumor suppressor genes that mutates in most human cancers, including T-ALL. Therefore, it is important to identify miRNAs that target the PTEN gene in T-ALL. For this purpose, in the present study, mi...

متن کامل

The Rb1 tumour suppressor gene modifies telomeric chromatin architecture by regulating TERRA expression

The tumour suppressor gene (Rb1) is necessary for the maintenance of telomere integrity in osteoblastic cells. We now show that the compaction of telomeric chromatin and the appropriate histone modifications of telomeric DNA are both dependent upon Rb1-mediated transcription of the telomere-derived long non-coding RNA TERRA. Expression of TERRA was reduced in Rb1 haploinsufficient cells, and fu...

متن کامل

The haploinsufficient tumor suppressor, CUX1, acts as an analog transcriptional regulator that controls target genes through distal enhancers that loop to target promoters

One third of tumor suppressors are haploinsufficient transcriptional regulators, yet it remains unknown how a 50% reduction of a transcription factor is translated at the cis-regulatory level into a malignant transcriptional program. We studied CUX1, a haploinsufficient transcription factor that is recurrently mutated in hematopoietic and solid tumors. We determined CUX1 DNA-binding and target ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017